DEPARTMENT OF PHYSICS HNB PG COLLEGE KHATIMA

PROGRAM OUTCOMES (POS): The Physics department offers two programs:

- 1. Physics for B.Sc. students of PCM.
- 2. M.Sc. Physics.

Both these programs are primarily geared towards cultivating the idea – "*Physics is the study of nature and its laws (till the most fundamental level*)", amongst the students. The Program Specific Outcomes (PSOs) and the Course Outcomes (COs) of the individual programs/courses/papers are more or less spun around this theme and are listed below.

Program Specific Outcomes (PSOs): For the Under-Graduate Physics program (B.Sc. Physics for PCM)

PSO1: Understanding the fundamental concepts of Physics and its basic laws.

- **PSO2:** Acquire the necessary mathematical tools and concepts required for understanding the underlying physics.
- **PSO3:** Acquire theoretical and experimental knowledge/skill related to the physical phenomenon, as well as the ability to connect both (theory & practical).
- **PS04:** Acquire problem solving skills and ability to apply them to real world physical phenomenon.

PSO05: Motivation to pursue higher studies (Postgraduate, Research etc.) in Physics.

Course Outcomes (COs): For the Under-Graduate Physics program (B.Sc. Physics for PCM).

	Understanding vector analysis (applying concepts for problem
Mechanics	solving), the nebula operator (Gradient, Divergence & Curl),
and	Differentiation and Integration of Vectors (fields), Integral Theorems
Theory of	(Gauss, Stokes, Green and corollaries).
Waves	Understanding - Frame(s) of Reference, Newton's Laws (along with
and Oscillations	application for point particles as well as system of particle), (conservative)
	force and potential energy, Work-Energy Theorem, Rocket motion.

Understanding quantities and ideas related to rotational motion- Angular Velocity, Angular momentum, Torque, Moment of Inertia (calculations and related theorems), Conservation of Angular Momentum.

Understanding Newton's law of gravitation, Gravitational Field, Potential & Potential Energy, Central force, Kepler's Laws of Planetary motion, Satellite and Planetary orbits and motions.

Understanding material properties such as elasticity, stress, strain, various elastic constants and their relationships, Experimental methods to determine the various elastic properties.

Understanding fluids at rest (surface tension, excess pressure) as well as in motion (viscosity, flow through capillary tube, Bernoulli's theorem, Poiseuille's formula), Experimental methods to determine surface tension and viscosity.

Understanding Simple Harmonic Motion, the Harmonic Oscillator Equation and solutions, Linearity and Superposition principle, Superposition of Harmonic Oscillations- Collinear(Interference & Beats) and Perpendicular (Lissajous Figures).

Understanding waves and wave motion, Waves on a string (travelling and standing), Normal-modes, Group and Phase velocities. Understanding the Fourier Theorem and its applications.

Understanding Damped Harmonic Oscillations, Over/Under/Critical damping, Relaxation time, LCR circuit.

Understanding Forced Harmonic Oscillations, Transient and Steady state behavior, Resonance and Sharpness, Bandwidth, Quality Factor.

Understanding intensity and loudness of sound waves, Decibels, Ultrasonic waves (generation, detection and uses), Building acoustics, Reverberation time and Sabine's formula, (Acoustic) design of buildings.

	Understand the basic concepts of Electrostatics-Field, Flux, Gauss's
	Theorem with applications, Potential and relation with Field, Potential
	Energy. Also concept of conductors, dielectrics and capacitance, The
	Electric-Vector.
	Understand the basic concepts of Magnetostatics- Biot-Savart's Law and
	applicatons, The Lorentz Force law, Div and Curl of magnetic field and the
Electricity and	magnetic vector potential, Ampere's circuital law, Magnetism in matter
Magnetism	(Magnetization, Permeability, Susceptibility) and Types of Magnetic
	materials (Dia, Para & Ferro). Understanding inductance (self and mutual
	and induction), Faraday's Law, Lenz' Law & energy conservation, AC
	circuits- RC, LC and LCR, Resonance.
	Realizing that EM is contained in the 4 Maxwell's Equations, Understanding
	equation of continuity, displacement current, Maxwell's correction to
	Ampere's circuital law. Gain knowledge on EM waves, propagation and
	their properties using Maxwell's equations, Polarization of EM Waves.
	The various practicals included in the Physics syllabus of B.Sc. 1 are aimed
	at understanding (and measuring) the phenomenon/ quantities studied in the
Practical (B.Sc. !st	theory papers (e.g. ideas about Momentof Inertia, Elastic constants, Simple
Year)	& Compound pendulums, Current, Voltage, Resistances, Solenoid, LCR
	circuit, SHM, Normal modes of a string etc.). The student should use and
	develop "hand-skills", observation-skills, mathematical tools (analytical,
	numerical, graphical etc.) to connect theory with experiments.
	Understanding the basic thermodynamic concepts- State variable,
	Equilibrium, Heat, Work, Zeroth and First Laws and the concepts of
	Temperature and Internal Energy, Applications of First Law to various
Heat Thermo	processes (Adiabatc, Isothermal etc.), Mayer's relation.
dynamics &	Understanding the need of second law of thermodynamics, Reversible &
Statistical Physics	Irreversible processes, Heat Engine and Refrigerator, Second Law of
	Thermodynamics (in term of Engines and refrigerators), concept of
	entropy, the Carnot cycle, second law in terms of entropy change, the Nernst
	theorem.

Understanding the four thermodynamic potentials, The Maxwell's relations and applications (response functions, Joule-Thompson cooling, Calusius-Clapeyron equation etc.)

Understanding the Kinetic Theory of Gases (towards a microscopic description), Maxwell's velocity distribution law, transport phenomenon, the classical equipartition theorem and its use to determine specific heats of mono-atomic and diatomic gases.

Understanding Blackbody radiation (the first step towards quantum mechanics), Spectral emissive power, Energy Density of Cavity Radiation, The Rayleigh-Jeans Law, Planck's law and deducing Wien's displacement law, Wien's distribution laws (1st and 2nd), Stefan-Boltzmann law and Rayleigh-Jeans from it.

Understanding Basic postulates of Statistical Physics, Macro and Micro States, Phase Space, Density distribution in phase space, μ space representation and its division, Statistical average values, Condition of equilibrium, Stirling's Approximation, Entropy and Thermodynamic probability, Boltzmann entropy relation. Ensembles, Micro -canonical, Canonical and Grand Canonical ensembles, Statistical definition of temperature and interpretation of second law of thermodynamic, Pressure, Entropy and Chemical potential. Entropy of mixing and Gibb's paradox, Partition function and Physical significances of various statistical quantities. Understanding Maxwell-Boltzmann law of velocity distribution (most probable velocity, average velocity, RMS velocity), Limitations of M-B statistics, Elementary idea of quantum statistics.

	Understanding Geometrical Optics- Fermat's principle of extremum path
	and applications, Cardinal points, Combination of Lenses, Lagrange
	equation of magnification.
	Understanding optical instruments- Eye pieces (Ramsden's, Huygen's and
	Gaussian), Aberrations (and types) and their corrections.
	Understanding the Interference of Light- The superposition principle,
	Coherence and conditions for interference, Double slit interference,
	Division of amplitude and division of wavefront, Fresnel's Biprism,
	Phase change upon reflection, Thin-film interference (Haidenger and
optics	Fizeau fringes), Newton's rings (theory and experimental setup), The
•	Michelson Interferometer and its (experimental) use, Fabry-Perot
	interferometer.
	Understanding diffraction of light- Fresnel diffraction, Half-period
	zones and zone-plate, Diffraction pattern of edge, slit and wire, Fraunhofer
	diffraction (single, double and multiple slits), The diffraction grating as a
	measurement tool.
	Understanding polarization of light- Transverse EM Wave, Plane polarized
	light (production and analysis), Malus Law, Brewster's Law, The Nicol
	Prism, Circularly and Elliptically polarized light, Optical rotation, The
	polarimeter (experimental setup also).
	The various practicals included in the Physics syllabus of B.Sc. 2 are aimed
	at understanding (and measuring) the phenomenon/ quantities studied in the
	theory papers (e.g. ideas about thermal conductivity, blackbody radiation,
Practical (B.Sc.	calorimetry, statistical probabilities, dispersion, interference, gratings, lens
2 nd Year)	combinations, polarization etc). The student should use and develop "hand-
	skills", observation-skills, mathematical tools (analytical, numerical,
	graphical etc.) to connect theory
	with experiments.

	Understanding the origins of quantum theory- Blackbody radiation and
	early radiation laws, Planck's (revolutionary) idea (the quantum
	hypothesis & birth of quantum mechanics), Photoelectric and Compton
	effects. waves and their wavelength, Davisson-Germer Experiment,
	Wave-particle duality, The
	uncertainty principle (position-momentum and Energy-time), Interference
	experiments with particles.
	Understanding the Schrodinger's equation (quantum mechanical equation of
	motion), Time dependent and time-independent versions, Framework of
	QM (postulates, wavefunction- properties and physical significance),
	Probability and Conservation, Operators, Eigenfunctions and Eigenvalues,
	Expectation values, The free particle wavefunction.
	Learning to solve the Schrodinger's equation, Stationary states, Boundary
	conditions lead to quantization, Potential Step & Barrier and transmission,
Modern	Potential well (infinite and finite depths), The one dimensional harmonic
Physics	oscillator in QM, Zero point energy.
i nysies	Learning to solve the Schrodinger's equation in three dimensions (for
	spherically symmetric systems), The Schrodinger's equation for the
	Hydrogen atom and solving it using separation of variables, Angular
	momentum eigenfunctions (spherical harmonics), Solving the radial
	equation using Frobenius's method, Emergence of the various quantum
	numbers (n, l and m).
	Understanding the various atomic models- Thomson, Rutherford and Bohr,
	the Bohr model and the hydrogen spectra, Other quantum
	ideas/experiments- Bohr-Sommerfeld model and quantization condition, the
	Stern-Gerlach experiment and electron spin, Electron magnetic moment,
	Bohr magneton, Larmor's precession, The vector atom model, Space
	quantization.
	Understanding optical spectra (on the basis of the vector atom model), LS
	and JJ couplings, Selection and Intensity Rules, The fine structure of sodium
	D lines, Magnetic interactions and Zeeman effect, X-ray spectra and

	Moseley's Law.
	Understanding basics of radiation, Absorption and Emission (spontaneous
	and stimulated), The Einstein's A and B coefficients, Metastable states (long
	living), Population inversion, Pumping, Lasing action and Laser/Maser.
	Understanding Franck-Condon Principle, Molecular spectra, Rotational,
	Vibration and Electronic spectra of diatomic molecules, General features of
	electronic spectra, Luminescence, Basics of Raman effect.
	Understanding the atomic nucleus, Constituents of the nucleus, properties,
	Nature of nuclear force, Binding Energy and BE curve, Stable nuclei, The
	semi-empirical mass formula, Models of thenucleus (Liquid drop and Shell
	model), elementary particles and their classification schemes.
	Understanding Kirchhoff's Laws, Superposition Theorem, Constant voltage
	source and constant current source, Conversion of voltage source into current
	source, Thevenin's Theorem and procedure for finding thevenin equivalent
	circuit, Norton's Theorem and procedure for finding Norton equivalent
	circuit, Maximum power transfer theorem, Applications of Network
	Theorems, Four terminal Network and h-parameters.
	Understanding elementary semiconductors and devices (intrinsic, extrinsic-
	P & N), the PN diode
	and its characteristics in forward and reverse bias, Zener diode, Optoelectric
Flootropics	devices- LEDs, Photodiode and Solar cell.
Electronics	Understanding diode circuits- The rectifier- Half-wave, Full-wave (Centre
	tapped and Bridge versions), Ripple factor and Efficiency, Filters (C, L, Pi
	etc.), Clipping and Clamping circuits using diodes, Voltage multipliers,
	Zener diode and voltage regulation.
	Understanding transistors and amplifiers- Bipolar Junction transistors (NPN,
	PNP), Characteristics (input and output) in various configurations (CE, CB
	& CC), Current gains alpha and beta and their relation, Load line analysis,
	Q-point, Active, Cutoff and Saturation regions, Transistor biasings;
	Transistor Amplifiers- Voltage, Current and Power, Class A, B and C
	amplifiers; The Field Effect Transistor (FET) and the Uni-Junction

	Transistor (UJT)
	Understanding Oscillator circuits- Feedback (negative and positive),
	Birkhausen's criterion, RC (Wein bridge and Phase-Shift) & LC (Collector
	tuned and Colpitt) oscillators and frequency of oscillation, Crystal
	oscillators, The Multivibrator and various operation modes (Monostable,
	Astable and Bistable).
	Understanding Digital Electronics and Circuits- Number systems (Binary
	etc.) and conversions, Basic Logic Gates (AND, OR & NOT) and
	realizations using diodes and transistors, Universal Gates (NAND & NOR),
	Other gates, Boolean Algebra- De Morgan's Theorem, Simplifying logic
	circuits, Minterm, Maxterm, SOP and POS, Karnaugh Map, Binary
	arithmetic (addition, subtraction) using
	circuits- Half/Full adders, Word (4-bit) binary adder-subtractor
	The various practicals included in the Physics syllabus of B.Sc. 3 are aimed
	at understanding (and measuring) the phenomenon/ quantities studied in
Due office l	the theory papers (e.g. ideas about Energy quanta, quantization, diodes,
Practical (B.Sc. 3 rd Year)	LEDs, rectifiers, power supplies, transistors, amplifiers, oscillators, logic
	gates, Boolean algebra, logic circuits etc). The student should use and
	develop "hand-skills", observation-skills, mathematical tools (analytical,
	numerical, graphical etc.) to connect theory with experiments.

PROGRAM SPECIFIC OUTCOMES (PSOs): FOR M.SC. PHYSICS

PSO 01: Strengthening and further understanding of the fundamental concepts of Physics and its basic laws (as acquired during the Under-graduate studies) by augmenting mathematical rigor (at the Physicists level) along with Physical interpretations (and clear physical picture(s)) of any theory/process/situation.

PSO 02: Acquire the necessary mathematical-tools (analytic, approximate, numerical, graphical etc.) and concepts required for understanding the underlying physics and use them to solve complex and advanced problems (including those with real world applications).

PSO 03: Gain substantial knowledge in the various (core) branches of Physics- viz. Classical Mechanics, Electrodynamics, Mathematical Methods, Quantum Mechanics, Statistical Mechanics, Condensed Matter Physics, Astrophysics, Electronics, Nuclear Physics, Particle Physics etc.

PSO 04: Acquire theoretical and experimental knowledge/skill related to the physical phenomenon, as well as theability to connect both (theory & practical). Also gradually develop the scientific method by designing and conducting experiments.

PSO 05: To get an exposure to research and research methodology during the dissertation work (theoretical and/or experimental) to be performed during the last semester.

PSO 06: Motivation to pursue a research/academic career in Physics. Aim towards writing and qualifying in various competitive exams- (e.g. CSIR-UGC-NET, GATE, JEST, BARC, DRDO, Entrance exams of premier research institutes (National & International)).

PSO 07: Gain knowledge of the subject along with general competence and analytical skill for employment in other sectors viz. industry, R&D, consultancy, public administration etc.

COURSE OUTCOMES (COS): FOR M.SC. PHYSICS

	To learn series solution of differential equations, Legendre, Bessel,
	Hermite, and Laguerre differential equation and related polynomial,
	physical integral form of polynomials and their orthogonality relations.
	Generating Function and recurrence relation.
Mathematical	Understanding curvilinear Coordinates and various operators in
Physics	circular, cylindrical and spherical coordinate systems, classification of
	Tensors, Rank of a Tensor, covariant and contra-variant tensors,
	symmetric and anti-symmetric Tensors, Kronecker delta symbol.
	Contraction of Tensor, metric Tensor and Tensor densities, covariant
	differentiation and Geodesic equation.
	Understanding function of complex variable, Cauchy's Riemann
	differential equation, Cauchy's integral theorem, residues and Cauchy's
	residues theorem, singularities, evolution of residues and definite
	integral.
	Hadanda dina Escrita internal en d'Escrita Transforma Escrita internal
	Understanding Fourier integral and Fourier Transform, Fourier integral
	theorem, finite and infinite integral, Laplace transform of elementary
	function (Dirac delta & Green's function), Solution of simple
	differential equations.

	Understanding mechanics of a system of particles (Constraints and
	generalized coordinates, D Alembert's principle, Lagrange equations
	for holonomic and non-holonomic systems and their applications,
	conservation laws of linear momentum, energy and angular momentum.
	Understanding Lagrangian and Hamiltonian Formulations with their
Classical	applications to various conservative systems, Hamilton Jacobi theory.
Mechanics	Understanding Dynamics of rigid bodies including Motion of a rigid
witchanics	body, body and space Reference system, angular momentum and Inertia
	tensor, Principle axes- Principle moments of Inertia, spinning tops,
	Euler angles, Infinitesimal rotations.
	Understanding Central force problem including Action and angle
	variables, phase integral, small oscillations, Kepler's laws of Planetary
	motion and their deduction, scattering in a Central field, Rutherford
	scattering cross section.
Quantum	Understanding that our world in inherently quantum and so the
mechanics	proper framework to understand it is Quantum Mechanics.
	"Establishing"/Understanding the basic framework of
	OM(Schrodinger's equation wavefunction and probabilistic
	Qui (Semouniger 5 equation, vareraneuronana probabilistic
	interpretation, uncertainty relations etc.).
	interpretation, uncertainty relations etc.). Learning to solve the Schrodinger's (time-independent) equation
	interpretation, uncertainty relations etc.). Learning to solve the Schrodinger's (time-independent) equation (various one and three dimensional problems).
	interpretation, uncertainty relations etc.).Learning to solve the Schrodinger's (time-independent) equation (various one and three dimensional problems).Understanding the various formulations of QM and their equivalence-
	 interpretation, uncertainty relations etc.). Learning to solve the Schrodinger's (time-independent) equation (various one and three dimensional problems). Understanding the various formulations of QM and their equivalence-Schrodinger, Heisnberg (Matrix) and Dirac formulations.
	 interpretation, uncertainty relations etc.). Learning to solve the Schrodinger's (time-independent) equation (various one and three dimensional problems). Understanding the various formulations of QM and their equivalence-Schrodinger, Heisnberg (Matrix) and Dirac formulations. Understanding symmetry in QM- Space and Time translation
	 interpretation, uncertainty relations etc.). Learning to solve the Schrodinger's (time-independent) equation (various one and three dimensional problems). Understanding the various formulations of QM and their equivalence-Schrodinger, Heisnberg (Matrix) and Dirac formulations. Understanding symmetry in QM- Space and Time translation symmetries as well as Rotational symmetry (Angular momentum, Spin,
	 interpretation, uncertainty relations, waveraneuronana probabilistic interpretation, uncertainty relations etc.). Learning to solve the Schrodinger's (time-independent) equation (various one and three dimensional problems). Understanding the various formulations of QM and their equivalence-Schrodinger, Heisnberg (Matrix) and Dirac formulations. Understanding symmetry in QM- Space and Time translation symmetries as well as Rotational symmetry (Angular momentum, Spin, Addition etc.)
	 interpretation, uncertainty relations, waveraneuronana probabilistic interpretation, uncertainty relations etc.). Learning to solve the Schrodinger's (time-independent) equation (various one and three dimensional problems). Understanding the various formulations of QM and their equivalence-Schrodinger, Heisnberg (Matrix) and Dirac formulations. Understanding symmetry in QM- Space and Time translation symmetries as well as Rotational symmetry (Angular momentum, Spin, Addition etc.) Understanding the various approximation methods to solve the
	 interpretation, uncertainty relations, "waveraneousnate" produbilistic interpretation, uncertainty relations etc.). Learning to solve the Schrodinger's (time-independent) equation (various one and three dimensional problems). Understanding the various formulations of QM and their equivalence-Schrodinger, Heisnberg (Matrix) and Dirac formulations. Understanding symmetry in QM- Space and Time translation symmetries as well as Rotational symmetry (Angular momentum, Spin, Addition etc.) Understanding the various approximation methods to solve the Schrodinger's equation (Perturbation, Variational method, WKB)
	 interpretation, uncertainty relations, waverane non-native probabilistic interpretation, uncertainty relations etc.). Learning to solve the Schrodinger's (time-independent) equation (various one and three dimensional problems). Understanding the various formulations of QM and their equivalence-Schrodinger, Heisnberg (Matrix) and Dirac formulations. Understanding symmetry in QM- Space and Time translation symmetries as well as Rotational symmetry (Angular momentum, Spin, Addition etc.) Understanding the various approximation methods to solve the Schrodinger's equation (Perturbation, Variational method, WKB approximation) and application to different (stationary) state problems.
	 interpretation, uncertainty relations, waveranetonand probabilitie interpretation, uncertainty relations etc.). Learning to solve the Schrodinger's (time-independent) equation (various one and three dimensional problems). Understanding the various formulations of QM and their equivalence-Schrodinger, Heisnberg (Matrix) and Dirac formulations. Understanding symmetry in QM- Space and Time translation symmetries as well as Rotational symmetry (Angular momentum, Spin, Addition etc.) Understanding the various approximation methods to solve the Schrodinger's equation (Perturbation, Variational method, WKB approximation) and application to different (stationary) state problems.

	(Time dependent perturbation theory, Fermi's
	Golden Rule, the Semiclassical theory of radiation etc.)
	Solden Rule, the Semiclassical theory of facilation etc.).
	Understanding the (average) microscopic description vs. the
	macroscopic description (as done in Thermodynamics) for a system
	with large no. of degrees of freedom.
	Understanding (and calculating within the framework) the various
	statistical ensembles and the corresponding (thermodynamic)
Statistical	formulations.
Mechanics	Application of the statistical ideas to derive/understand the behavior
	of gases (ideal as well as real).
	Understanding the basics of Quantum SM (FD & BE stat) and some
	simple applications.
	Understanding blackbody radiation as a gas of photons (i.e. statistical
	treatment RE statistics)
A 4	La lasta dia (lata stial association of materials and malicing the
Atomic &	fact that it are just an application of Ouantum
MolecularPhysics	Mechanics to atomic/molecular systems.
	Understanding the atomic and molecular spectra along with their finer
	features (Fine structure, Vibrational-Rotational spectra).
	Understanding the effect of electric and magnetic fields on the various
	spectra via interactions (or charge and/or spin).
	Understanding the various theories/formulations/models to understand
	spectra (Vector atom model, LS, II coupling schemes, Raman
	spectra (rector atom model, 25, 55 coupling schemes, realized
	Indexton directly requestion and Born-Oppen memer treatments etc.)
	Understanding the quantum theory of radiation (Einstein's coefficients)
	and basic working principle of Lasers.

Practical (Sem1)	The various practicals included in the Physics syllabus of M.Sc. 1 st Semester are aimed at understanding (and measuring) the phenomenon/ quantities studied in the theory papers of various other semesters (e.g. CRO, SCR, Transistors, Diodes, FET, Amplifiers, Oscillators, Antennas, Amplitude modulation/demodulation etc.). The student should use and develop "hand-skills", observation-skills, mathematical tools (analytical, numerical, graphical etc.) to gradually connect theory with experiments.
General relativity and cosmology	Understanding Christoffels connection as Einstein's connection, Gravitational action, field equations and their general properties, Newtonian limit of Einstein's field equations, Metric in spherically symmetric space-time (Schwarzchild metric), Orbits in the Schwarzschild metric, gravitational collapse of a dust sphere, Schwarzschild black holes. Introduction of Gravitational radiation, Wave equation in linearized theory and plane waves, propagating modes of gravity, gravitational waves in a flat space-time background, propagation of gravitational waves in the curved space-time, Energy and momentum of the gravitational waves, Detection of gravitational waves. Basic Concepts and elementary idea of big-bang and steady state cosmologies, Seagull static models, Cosmological principle, Friedmann space-time, Robertson-Walker line element, Weyl's postulate, expansion of the universe, Hubble's law, dynamical equation of cosmology and their consequences, the primordial fire and the remnant radiation, Big-bang and steady state models of the universe.

	Understanding, applying and formulating QM at an even deeper level
	than done earlier (in the QM Course).
	Applying quantum ideas to understand the scattering of particles.
	Employing various(approximate) methods- Partial Wave Analysis and
Advanced	the Born approximation.
Quantum	Understanding notion of identical and indistinguishable. Realizing
Mechanics	origin of the Pauli's exclusion principle and related notions (Spin-
	Statistics connection, Permutation symmetry etc.) Formulation (along
	with the need) of the relativistic version of (NR) quantum mechanics.
	Working out in detail the two basic relativistic wave equations (Klein-
	Gordon and Dirac equations) and the various associated
	phenomenon/notions (Plane wave solutions, Negative Energies and
	Probabilities, Spin of electron and its magnetic moment, The Hole
	Concept, Particles and Antiparticles etc.)
	Understanding the need of relativistic quantum fields (towards
	Quantum Field Theory), Field formulations for the various wave
	equations via 2nd quantization.
	Understanding the atomic nucleus and its various properties along with
	the experimental tools and techniques of nuclear investigations.
	Understanding basic properties of the nucleus and the various nuclear
	models.
	Understanding the nature of the nuclear force along with experimental
Nuclear Physics	setup(s) to study them. Understanding radioactive decay and its
	various feature.
	Understanding nuclear reactions by applying (mainly) quantum ideas to
	them.

	Get a basic understanding of the fundamental constituents of our
	Universe (the "elementary" particles and the four fundamental
	interactions).
	Understanding the gauge principle and role of symmetry (along with
	ideas of unification). Understanding the common (mathematical) origin
Elementarv	of (the various) conservation laws as a manifestation of (some)
Particle Physics	symmetry.
	A very basic understanding of the unification of the fundamental
	interactions- Electroweak and Grand Unifications.
	Understanding (hadronic) matter as composed of quarks and the
	"construction" schemes (i.e. various direct-product representation of
	SU(3)). An overview of the various properties of quarks (and also of
	the composite mesons and baryons).
	Understanding of the basic (theoretical) ideas involved in the study
	of Condensed Matter Physics.
	Understanding the origin of elasticity (and elastic constants) from the
	properties of the underlying crystal structure.
	Understanding the interaction of crystals with radiation (X-rays) and
Condensed Matter	the related theoretical framework as well as experimental setup(s)
Physics	(Diffraction experiments).
e e e e e e e e e e e e e e e e e e e	Understanding the quantum treatment of elastic/sound waves (i.e. the
	idea of phonons and phonon gas etc.)
	Understanding the thermal properties of solids on the basis of the
	phonon picture.
	Understanding crystal defects, superconductivity, and magnetism.

	The various practicals included in the Physics syllabus of M.Sc. 2 nd
	Semester are aimed at understanding (and measuring) the
	phenomenon/ quantities studied in the theory papers of various other
	semesters (e.g. oscillators, electronically regulated power supply,
Practical (Sem2)	negative feedback amplifiers, FET characteristics, Michelson
	Interferometer, Fabry Parot Interferometer, four probe method,
	Fresnel's Law, Magnetic susceptibility, Radiation laws, etc.). The
	student should use and develop "hand-skills", observation-skills,
	mathematical tools (analytical, numerical, graphical etc.) to gradually
	connect theory with experiments.
	Understanding Integrated Circuit technology, Classification of IC's,
	Fabrication of IC's & components, Basic monolithic integrated
Advanced	circuit technology, processes used in monolithic technology, active &
Electronics I	passive components, metal semiconductor contact, thick & thin film
	IC's, hybrid IC's, charge coupled devices (CCD), advantages &
	limitations of integrated circuits. Understanding Operational
	amplifiers (Linear and Non-linear Analogsystems),

Advanced Electronics II	Understanding Digital communication, Digital signal processing, Image processing (Basic ideas only), Pulse Modulation systems, Pulse Amplitude Modulation, Pulse Width Modulation, Pulse position modulation, Pulse code modulation, Delta modulation Frequency division multiplexing (FDM), Basic idea of digital telemetry. Learning Optical communication, Principle of optical communication, Different modes of propagation of E. M. Wave through optical fibre, Brief concept, classification of fibres and ray path, Advantages of multimode fibres and cladding , Optical Fibre connectors, Optical Fibre communication Receiver, Brief Introduction , Signal path through optical data link, Block diagram of optical Receiver, Advantages of optical communication, Light propagation in cylindrical wave guide. Gaining knowledge of Memory and optoelectronic devices, Bulk and thin films. Photoconductive devices (LDR), Memory devices, static and dynamic random access memories SRAM and DRAM, CMOS and NMOS, nonvolatile-NMOS, magnetic, optical and ferromagnetic memories, charge coupled devices (CCD), LCDS.
Electrodynamics	Realizing the unification of Electricity and Magnetism as a single physical concept- Electromagnetism (or Electrodynamics) and that Maxwell's equations express this fact. Understanding various electromagnetic phenomenon (EM Wave in vacuum, conductors, non- conductors, plasma, bounded media, wave guides). Understanding the potential formulation of ED (and its advantages). Understanding generation and nature of radiation (fields) from moving (accelerated) charges. Formulating ED (and writing and performing calculations) within the relativistic framework i.e. four-vector & Tensor notations. Understanding the role of this relativistic formulation and ability to apply it elsewhere.

	The various practicals included in the Physics syllabus of M.Sc. 3 rd
Practical (Sem 3)	Semester are aimed at understanding (and measuring) the
	phenomenon/ quantities studied in the theory papers of this semester
	(Richardson's Law, ESR spectra, Hall effect, multivibrators, transistor
	amplifiers cum feedback amplifiers, FET and MOSFET, VTVM etc.).
	The student should use and develop "hand-skills", observation-skills,
	mathematical tools (analytical, numerical, graphical etc.) to gradually
	connect theory with experiments.
	Understanding power supply regulation including Servomechanism,
	regulation using OA, Zener reference source, The 723 regulator current
	regulator, short circuit and over load protection, Precision rectifier, IC
	regulated power supply. Three terminal voltage regulations, dual
	Polarity regulated power supplies using 78 XX and 79 XX series
	regulators, Switched mode power supply (SMPS), Active filter, PLL
Advanced	understanding microwave production with basic ideas of Microwave
Flectronics 3	frequencies, Principle of velocity modulation. Reflex klystron. Theory
Liter only 5	and uses an of cavity magnetron PIN & GUNN Diode, Detection of
	microwave measurement of power.
	Understanding Advantages and Disadvantages of Microwave
	transmission, loss in free space, propagation of microwaves,
	atmospheric effects on prorogation, Fresnel zone problem, ground
	reflection, fading sowlles, detectors, components, antennas used in
	microwave communication system.
Advanced	Understanding Ananlog computation with Solution of ordinary linear
Electronics 4	differential equations with constant coefficients, Operation modes of
	analog computers, repetitive operation of computers, Time scaling,

	amplitude scaling, Generation of functions, Simulation of time varying
	systems.
	Understanding Boolean algebra, Canonical forms of Boolean,
	functions, Simplification of Boolean functions (K-map, Tabulation
	method), don't care conditions. Digital logic families;
	Adders & Subtractors, Magnitude comparator, Code converters;
	Parallel adders, Encoders, Decoders, Multiplexers, Demultiplexers,
	Parity bit generator and checker, Read only memory (PROM, EPROM),
	P.L. Digital to Analog and Analog to Digital converters.
	Understanding Sequential logic- Memory element, RS, JK, JKMS, T
	type and Edge triggered Flip flop; Registers; Shift register; Counters—
	synchronous and Synchronous; The memory unit; Semiconductor
	Random Access Memory; Inter-register transfer; Arithmetic; Logic and
	Shift Micro-operation; Fixed point and floatation point data.
	Study of regulated power supply (723), operational amplifier (741),
	Timer (555), A to D and D to A converter, Logic gates (Different types),
Practical (Sem 4)	amplitude and frequency modulations and demodulations, different flip-
	flop circuits (RS, JK, Dk type, T-type, Master slave), Digital
	combinational and sequential circuits, Microprocessor (8085), SCR etc.
	The student has to complete a dissertation/project (theoretical and/or
	experimental) and submit a written report during this last semester.
	This gives the students some exposure to research and research
Dissertation/ Project	methodology Moreover the written report enables the students to write
	scientific communication All this is aimed at nurturing them into
	(nossible) future researchers who are canable of (a) thinking and
	analyzing critically and clearly (b) adopting the scientific method and
	(c) working independently
Elective Comment	(c) working independentity.
Liecuve Courses	

Communication Electronics	Understanding AM and FM (Transmission and reception): Modulation, AM generation, Power consideration, Balanced modulator, SSB transmission, AM detection, AGC, Radio receiver characteristics, signal to noise ratio, FM analysis, noise considerations, generation, direct method and reactance tube method, FM transmitter, AFC, FM Propagation, phase discriminator. To know the propagation of radio waves, Antenna and TV. Study of transmission lines, Voltage and current relations on transmission line, propagation constant, characteristic impedance, impedance matching, quarter wave T/L as impedance transformer, attenuation along coaxial cable, cables of low attenuation, propagation of radio waves between two parallel lines, wave guide modes, TE10 mode and cut off wavelength, cavity resonator, light propagation in cylindrical wave guide, step index and graded index fibers, attenuation and dispersion in fibers.
Plasma Physics	Introduction to Plasma, Elementary concept: Derivation of moment Equation from Boltzmann Equation, Plasma Oscillation, Debye Shielding, Plasma parameter, Magneto plasma, Plasma confinement. Understanding MagnetoHydrodynamics and magneto Plasma To study plasma propagation and fluid plasma, Propagation at finite angle and CMA diagram, Propagation through ionosphere and magnetosphere, Helicon, Faraday rotation, Fluid equations for a plasma, Continuity equation, Momentum balance equation, Equations of state, Two-fluid equations, Plasma resistivity.

	Learning elementary idea of combinational and sequential circuits
	Overview of Microcomputer organization and operation
	Microprocessor evolution and types Fundamental knowledge of
	Microprocessor (2025/2026) Architecture and its operation Pasia idea
	of logic devices for interfacing 2025/2026
	of logic devices for interfacing 8085/8086.
Digital Electronics	Understanding Computer Organization and Architecture
and Computer	Understanding data communication, Computer and Communications,
Architecture	Need for communication networks, Internet and World Wide Web,
	communication protocols, Local Area Networks, Interconnecting
	networks, Future of Network Technology.
	To study Characteristics of communication channels, Allocation of
	Channels, Physical Communication media, Public Switched Telephone
	Network, Cellular Communication Path, ATM networks.
	To gain knowledge about Earth atmosphere, Elementary concept of
	atmospheric sciences, atmosphere and it composition, Thermal and
	pressure variation in earth atmosphere, Thermal structure of the
	troposphere, stratosphere, mesosphere and ionosphere, Hydrostatic
	equation, spectral distribution of the solar radiation, Green house effect
	and effective temperature of earth. Meteorological process and different
Atmospheric	system, local winds, monsoons, fogs, clouds, precipitation, Cyclones
Physics	and anti-cyclones, thunderstorms, Mountain Meteorology.
	Understanding Atmospheric Dynamics and Thermodynamics,
	Environmental pollution and climate change
	Study of Convectional measurements of pressure, temperature,
	humidity, wind speed and direction, sunshine duration, radiation clouds,
	upper air pressure, temperature, humidity and wind measurements, Polit

Г	
	of radars to study the atmospheric phenomenon, LIDAR, SONAR,
	RASS
	(Radio- acoustic sounding system), Observational technique for aerosol.
	Understanding Emergence of Nanotechnology – Challenges in
	Nanotechnology, Carbon age–New form
	of carbon (From Graphene sheet to CNT), Introduction to
	nanomaterials, evolution of nanoscience, general properties of
	nanomaterials, role of size in nanomaterials, semiconducting
	nanoparticles, nanoclusters, quantum wells, conductivity and enhanced
	catalytic activity compared to the same materials in the macroscopic
	state Sumthasis of nono structured materials and sel cal processing
.	state. Synthesis of nano structured materials, sol-ger processing,
Introduction to	Mechanical alloying and mechanical milling, Inert gas condensation
Nanoscience and	technique, Nanopolymers, Bulk and nano composite materials, top
Nanotechnology	down and bottom up approaches.
	Study of properties of nanomaterials and characterization techniques.
	Learning about the applications of nanomaterial to Molecular
	electronics and nanoelectronics. Quantum electronic devices. Carbon
	Nano Tube
	based transistor and Field Emission Display, Biological applications,
	Biochemical sensor, medical applications and Membrane based water
	purification. Biological systems- DNA and RNA - Lipids.
Self study Courses	
	Understanding Gauge Theory and Unification of Fundamentals Forces,
Advances in High Energy Physics	Quantum Chromodynamics, Thermal Field Theory and Beyond
	Standard Model

	Understanding Laser Raman Spectroscopy and Laser Spectroscopy in
Advances in Laser	Molecular Beams.
Physics	To gain knowledge of Modern Laser Spectroscopy.
Advances in Solar	Learning about Solar Elares: Magnetohydrodynamic Processes, Solar
Dhysios	Cycle: Observations and theory. Sun Forth Connection
rnysics	Cycle. Observations and meory, Sun-Earth Connection.
	To Know the Basic Concepts of Bio-Physics
Bio-Physics	Understanding Technique For The Study of Biological Structure and Function
	To study the Radiation Effects on Biological Systems
	Understanding the role of Computers in Physics, Formulation of a
Computer Application in Physics	 problem for solution on a computer, paradigm for solving physics problems for solution . Algorithms and Flowcharts Learning Scientific Programming (FORTRAN and C language), Scientific Word Processing and Modern Software's For Mathematical Computing (LaTeX and MatLab). Study of Computer Applications to Physical Problems(Numerical Methods and Monte Carlo methods).
Medical Physics	 To know about the mechanics of human body, Physics of Respiratory and Cardiovascular System. Understanding Electricity in the Body and Sound/Light In Medicine and Diagnostic X-Rays and Nuclear Medicine. To gain knowledge about Medical Precision Equipments and Modern Medicines (MRI, PET, CT scan, ventilators, description, working, analysis and clinical applications of Ultrasonic imaging, ECG, EMG, EEG and ERG, Nanotechnology-based drugs e.g. Abraxane, Doxil C-

dots (Cornell dots) and goldnano particle as a diagnostic tool, Anticancer polymeric nanomedicines, Use of nano-technology in Photodynamic therapy.

